Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mikrochim Acta ; 191(5): 282, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38652326

ABSTRACT

A novel dual-mode fluorometric and colorimetric sensing platform is reported for determining glutathione S-transferase (GST) by utilizing polyethyleneimine-capped silver nanoclusters (PEI-AgNCs) and cobalt-manganese oxide nanosheets (CoMn-ONSs) with oxidase-like activity. Abundant active oxygen species (O2•-) can be produced through the CoMn-ONSs interacting with dissolved oxygen. Afterward, the pink oxDPD was generated through the oxidation of colorless N,N-diethyl-p-phenylenediamine (DPD) by O2•-, and two absorption peaks at 510 and 551 nm could be observed. Simultaneously, oxDPD could quench the fluorescence of PEI-AgNCs at 504 nm via the inner filter effect (IFE). However, in the presence of glutathione (GSH), GSH prevents the oxidation of DPD due to the reducibility of GSH, leading to the absorbance decrease at 510 and 551 nm. Furthermore, the fluorescence at 504 nm was restored due to the quenching effect of oxDPD on decreased PEI-AgNCs. Under the catalysis of GST, GSH and1-chloro-2,4-dinitrobenzo (CDNB) conjugate to generate an adduct, initiating the occurrence of the oxidation of the chromogenic substrate DPD, thereby inducing a distinct colorimetric response again and the significant quenching of PEI-AgNCs. The detection limits for GST determination were 0.04 and 0.21 U/L for fluorometric and colorimetric modes, respectively. The sensing platform illustrated reliable applicability in detecting GST in real samples.


Subject(s)
Cobalt , Colorimetry , Glutathione Transferase , Manganese Compounds , Metal Nanoparticles , Oxides , Polyethyleneimine , Silver , Polyethyleneimine/chemistry , Silver/chemistry , Cobalt/chemistry , Oxides/chemistry , Manganese Compounds/chemistry , Metal Nanoparticles/chemistry , Colorimetry/methods , Glutathione Transferase/metabolism , Glutathione Transferase/chemistry , Limit of Detection , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Humans , Glutathione/chemistry , Oxidation-Reduction , Biosensing Techniques/methods , Phenylenediamines/chemistry , Nanostructures/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...